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The theory of a thermal explosion in a vessel with exothermic chemical 
reactions has been developed in [l-31. For the description of the 
thermal explosion Semenov [ll employed the values of the temperature and 
heat output averaged over the vessel. He established that for dimensions 
of the vessel less than a certain critical dimension, two regimes are 
possible for the course of the chemical reactions. For the critical 
dimension of the vessel these solutions degenerate into one, whilst for 
dimensions greater than critical a steady solution does not exist - a 
thermal explosion occurs. 

The qualitative study of the two regimes of the chemical reaction for 
vessels of small dimensions, carried out by Semenov, showed that the 
only one of them which is stable is that which corresponds to the lower 
temperature of the reacting mixture in the vessel. 

Frank-Kamenetskii [2,Sl in the steady theory of the thermal explosion 
solved exactly the problem of the distribution of temperature in the 
vessel and the critical condition for a thermal explosion. (A very full 
account of the steady theory of the thermal explosion, from the stand- 
point of mathematical treatment. is given by Barenblatt in t4f.) In this 
theory. just as in Semenov’s theory, with dimensions of the vessel less 

than critical, several different steady distributions of temperature are 
possible: for plane and cylindrical vessels there are two solutions, for 
spherical vessels the number of solutions can vary from one to infinity 
depending on the dimension of the vessel. 

The stability of the solutions of the steady theory of the thermal 
explosion has not been investigated. By analogy with Semenov’ s results 
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[II, the proposition was put forward in [21 that in the case of plane 

and cylindrical vessels the distribution of temperature corresponding to 

the lower temperature at the centre of the vessel is stable, whilst the 

higher is unstable. Indications on the stability of the solutions In 

this case are also contained in [41. However, carrying through the 

analogy for the spherical vessel with a large family of solutions pre- 

sents significant difficulties, and therefore no conclusions at all con- 

cerning the stability of the solutions in the spherical vessel have been 

drawn, 

Below we carry out an investigation of the stability of the solutions 

of the steady theory of the thermal explosion for vessels of various 

shapes. Be apply a method. similar in certain respects to the method 

applied by Barenblatt and Zel’dovich for the explanation of the stability 

of propagation of a laminar flame L5.61. It will be shown that, of all 

possible regimes of the chemical reaction. the only regime which is 

stable is that with the lowest temperature at the centre of the vessel. 

1. Fundamental propositions of the steady theory of the thermal ex- 

plosion. Let us reproduce briefly from first principles the fundamental 

propositions of the steady theory of the thermal explosion. 

With the usual assumptions of this theory [2,31 in the case of sym- 

metric vessels the problem reduces to the solution of the steady equa- 

tion of heat conduction with a heat production function 

5 -$ pg) + 2P = 0 

(- IT = (T- To) E 
RTo” ’ exp(- &!y’) 

(1.1) 

Aere U is the dimensionless temperature, T is the temperature in the 

vessel, T,, is the temperature of the walls, E is the energy of activa- 
tion, R is a universal constant, c is the dimensionless coordinate 

(measured from the centre of the vessel), Q is the heat effect of the 

reaction, Z is a multiplying factor, k is the thermal conductivity of 

the reacting mixture and the index v = 0, 1, 2, for plane, cylindrical 

and spherical vessels, respectively. The boundary conditions (se is the 
dimensionless radius of the vessel) are 

E = 0. dU / dE = 0, E = Ea, u=o (1.2) 

As was first shown in [Al, equation (1.1) with the first of the bound- 

ary conditions (1.2) is invariant with respect to the group of trans- 
formations 

U (0 = a + UO (Sea”) (1.3) 



506 ,I.(;. Istratov and V.8. I.ihrovich 

Here U(c) is the general solution of equation (I. l), whilst U,(t) is 

the particular sofut ion satisfying the conditions 

Fig. 1. 

F,=o, uc=o, diJofdf = 0 (I.9 

The parameter a is the value of the 
temperature at the centre of the vessel. 

Making use of the general form of the 
solution (1.3), we can find the envelope of 
the solutions. The equation of the envelope 
in the general case has the form 

Here s* is the root of the equation 

2 + @ duo (s*) --&----=o ft.61 

The envelope (1.5) in the g-plane (U > 0, 5 > 0) divides the region 

where there are solutions of the equation (1, l), from the region where 
solutions do not exist. The intersection of the envelope with the axis 

of e cuts off a segment c* corresponding to the maximum dimension of the 

vessel for which a steady distribution of temperature is still possible 

For larger dimensions of the vessel solutions do not exist: an ex- 
plosion occurs. 

The particular solution ~~(~} can be 
obtained in closed form [43: 

for a plane vessel (v = 0) 

U@(E) -= .- 2lncolhE (t.8) 

for a cylindrical vessel (V = 1) 

CT0 (B = - 2. [ln & + lncoshln j-1 (1.6) 

Equations (1.6) and (1.7). determining 

S* and the maximum dimension of the 

vessel g*. for these cases take the forms 

(v I 0) 1 = s%nhs*, 5’ = s* /unhs* (1.16) 

(v = I) s* = 2, 5* = 1 (1.11) 
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In Fig. 1 we depict the forms of the envelope and the curves of 
temperature distribution for plane and cylindrical vessels. For dimen- 
sions of the vessel < < <* there are two possible solutions with differ- 
ent values of the quantity a (curves f and 2). Tbe values of a are de- 
termined in the general case (v is arbitrary) by solution of the equa- 
tion 

a + uo (4 = 0, x = Ee” J 2 (1.12) 

When g = {* both solutions degenerate into one (curve 3), and for 
this solution 

a* = - uo (s% s* = pe=/2 (1.13) 

From the form of the solutions (1.8) and (1.9) and the expression 
(1.12) for a it is easy to see that a < a* when s < s*, and a > a* when 
s > s+. 

For the spherical vessel (v = 2) we have not succeeded in integrating 
equation (1.1). However, study of the behavior of the solution [4l shows 
that in this case equation (1.6) has a non-denumerable family of roots 
si* and consequently in the q-plane there is a non-denumerable family 
of envelopes. In Fig. 2 is shown the distribution of some of these 
envelopes (all the envelopes are distributed between the points El and 
kg, being dense in the neighborhood of the point <, = l), and some 
temperature distributions have also been drawn. All the solutions as < 
grows at first touch the extreme right-hand envelope, and subsequently 
the extreme left-hand envelope, then the second from the right, and then 
the second from the left. and so on. In the same order we shall denote 
the points of intersection of the corresponding envelopes with the axis 
of c as the points CI, &, {y, c4, etc. The critical dimension of the 
vessel is determined by <* = El. Through the point CI and in the region 

9 < e < s** through each point there passes one solution. When c2<c4 CI 
several solutions are possible. Thus, with <g < e < El there are two of 
them: with t2 < c < t4 there are three; when cs < c < t3 there are four, 
and so on. Close to <, = 1 the solutions become infinitely numerous. The 
curves touching the envelopes at the points 51, ex, t3, . . . , are charac- 
terized by the parameters ai’. determined according to (1.13) for differ- 
ent roots S i+’ 

2. Formulttion of the problem of stability Study of the stability 

of the different solutions in the steady theory of the thermal explosion 
is carried out by the method of small perturbations. We consider the 
non-steady equation of heat conduction 

xQZEt 

2RToPk exp (- i&j) (2.1) 
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Here ~(4, T) is the dimensionless temperature, depending upon the 
time, 7 is the dimensionless time, t is the time and K is the thermal 
conductivity of the reacting mixture. 

It will be assumed that the unsteady solution varies only slightly 

from the steady solution (produced by a small perturbation of the steady 

solution) 

u (E, r) = u 6) + qJ 6, 2) (2.2) 

where 9(<, T) is a small increment, and U(c) has the form (1.3). 

Making use of the smallness of q(<, T), let us linearize equation 

(2.1) 

Here we have made use of expression (1.3) 

(s = @“, a), 

for U(t). 

(2 ::: 

The boundary conditions for the solution of the equation (2.3) are 

s 2cz $0 = e= ! 2 Eo, ql = 0; acp 
.9=-o, -=o as (2.4) 

(the perturbation is assumed symmetric). The solution of (2.3) is sought 

in the form 

9, (s, 2) = T (4 P W (2.5) 

The temporal dependence of the solution is determined by the factors 

T,, (2) = e--h”e =.: 

Here h, are the eigenvalues of the Sturm-Liouville problem 

1 d dP --sv- 
sv ds ds 4(2rU” t8) -I- h) P = 0 

(2.6) 

(2.7) 

with the conditions 

s = 0, .hp_ = 0; s = I, P=O 
(/S 

cw 

If in the spectrum of eigenvalues of the problem all the A,, > 0, then 

the solution under study is stable, whilst, if there is at least one 

A, < 0, the solution is unstable. The direct determination of the whole 

spectrum of eigenvalues A,(n = 0, 1, 2, . ..) presents significant diffi- 

culties. However, there is no need for this. To answer the question of 

the stability we need only know the sign of the zero-th eigenvalue h,, 

since from the theory of Sturm-Liouville boundary problems [81 it is 
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known that with increasing number the magnitude of the eigenvalue in- 

creases. 

For study of the stability of the solution we can also employ the 

method applied by Barenblatt and Zel’dovich to the problem of stability 

of propagation of a one-dimensional laminar flame [5,61. This method is 

based on the property of eigenfunctions, that the number of zeros of an 

eigenfunction is equal to the number of its eigenvalue. For laminar 

flames it turns out that the eigenfunction corresponding to the eigen- 

value A, = 0 has no zero anywhere, apart from infinity, and therefore 

the eigenvalue A, = 0 is the zero-th eigenvalue. Since all the other 

eigenvalues are positive. the propagation of the flame is stable. 

For study of the stability of the solutions of the steady theory of 

the thermal explosion we shall seek the general solution of equation 

(2.7) corresponding to A = 0. The solution of the equation will satisfy 

the boundary conditions (2.8). i.e. they are eigenfunctions for the 

eigenvalue A, = 0 only for certain discrete values Soi = si*. The bound- 

ary of stability of the solution of the problem with regard to se is 

given by the smallest value so i = s i*. In fact, in the interval 0 < s\( 

sI* the function does not vanish anywhere, i.e. it is the zero-th eigen- 

function. With decrease of the segment [O, sel, according to the pro- 

perty of eigenfunctions [81 the zero-th eigenvalue he does not diminish, 

and consequently the stability of the solution is guaranteed. With in- 

crease of [O, se1 the eigenvalue A, decreases: if A, increased with in- 

creasing so, then this would contradict the stated property of eigen- 

values; also A, cannot equal zero, since all the eigenfunctions for 

h, = 0 are contained in the general solution of equation (2.7). whilst 

all successive points, at which the general solution is an eigenfunc- 

tion. correspond to the non-zero-th eigenvalues (n f 0) - the eigenfunc- 

tions, apart from the end of the segment, vanish in the segment itself. 

Accordingly, the investigation of stability amounts to finding the 

general solution of equation (2.7) with h = 0 and determining the 

minimum segment s l*, on which the boundary conditions (2.8) are ful- 

filled. 

3. Stability of the temperature distributions in a plane reaction 

vessel. In the plane case the problem reduces to the solution of an 

equation of the following form (A has here already been set equal to 

zero) 

daP 
p+_&& P=O (3.1) 

with the boundary conditions (2.8). This equation reduces to 
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dy d [2 (1 - eY) $- + eYP] = 0 i 
eY = 

1 
- 

co& s ) (3.2) 

with the new variable y, related to s by the relation given in brackets. 

Integration of (3.2) gives 

P = cltanhs + cz (1 - StanhS) (Cl, Cz = const) (3.3) 

The first of the conditions (2.8) determines Cl = 0. Accordingly, 

the function P is an eigenfunction for the segment s*, for which 

1 - s*tanhs* = 0 (3.4; 

This expression completely coincides with equation (l.lO), determin- 

ing the envelope of the solutions (1.5). 

As already mentioned in Section 1, a < a* when s < S* and consequently 

solutions with small a are stable solutions. (Ye notice that a is the 

temperature at the centre of the vessel.) Unstable solutions with s > S* 

correspond to distributions with a > a* - high temperature at the centre 

of the vessel. 

4. Proof of stability in the general case. The results obtained in 

Section 3, indicating that the general solution of the equation of the 

boundary problem (3.1) is the expression serving to determine the root 

s* appearing in the equation of the envelope. suggests that this pro- 
perty is true also in the general case (for arbitrary v). 

This fact is actually not fortuitous, as was shown by Zel’dovich. 

Since the envelope can be considered as the geometrical locus of the 

points of intersection of two infinitely close steady solutions, the 

difference of these solutions is a stationary perturbation. i.e. a Per- 

turbation with h = 0. 

Let us convince ourselves that the equation (2.7) with A = 0 is 

satisfied by the function 

C = const (4.1) 

0 

The expression for dU,,/ds is obtained by direct integration of equa- 

tion (1.1) with the condition dU,/ds = 0 for s = 0. 

Remembering that dP/ds = 0 when s = 0. let us rewrite equation (2.7) 

as 
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Calculating the derivative dP/ds on the left-hand side and the inte- 
gral on the right-hand side of equation (4.2) and using (4.1). we find 
that equation (4.2) is satisfied. 

Accordingly, the function (4.1) is an eigenfunction of the boundary 
value problem for those values of si* which are roots determining the 
envelopes of the solutions. .Is has already been said, the stable solu- 
tions correspond to solutions with s,, less than the minimum root of 
equation (1.6). Rut corresponding to the minimal value sl* there is the 
minimal value al*, since s is a monotonically increasing function of a. 
In fact, let us differentiate the relation (1.12) 

ds _-_- 
dz 

(4.3) 

The critical value al* is calculated according to the formula 

a1 
*=- uo (%*I (4.4) 

Let us illustrate what has been said, using the example of a spherica 
vessel. The temperature distributions and the envelopes of the solutions 
are depicted in Fig. 2. Curve 4, starting at the point of intersection 
of the extreme right-hand envelope with the axis of c has a = al*. All 
the curves i relate to curves with a < al* and are therefore stable. 
Curves 2 and 3 with a > al* are unstable. 

It is interesting that the qualitative character of the stability of 
the solutions can be assessed from the following arguments: if we per- 
turb curve f, then everywhere we move into a region where there are 
steady solutions. But if we perturb curves 2 and 3 close to their points 
of tangency with the extreme right-hand envelope, then we may find our- 
selves in a region where steady solutions do not exist, and suspicion 
arises as to the instability of the solution. 

The author thanks G.I. Barenblatt for suggesting the problem and dis- 
cussing it. 
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